Shrinkage and Variable Selection by Polytopes

نویسندگان

  • Gerhard Tutz
  • Sebastian Petry
چکیده

Constrained estimators that enforce variable selection and grouping of highly correlated data have been shown to be successful in finding sparse representations and obtaining good performance in prediction. We consider polytopes as a general class of compact and convex constraint regions. Well established procedures like LASSO (Tibshirani, 1996) or OSCAR (Bondell and Reich, 2008) are shown to be based on specific subclasses of polytopes. The general framework of polytopes can be used to investigate the geometric structure that underlies these procedures. Moreover, we propose a specifically designed class of polytopes that enforces variable selection and grouping. Simulation studies and an application illustrate the usefulness of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Inclusion and Shrinkage Algorithms

The Lasso is a popular and computationally efficient procedure for automatically performing both variable selection and coefficient shrinkage on linear regression models. One limitation of the Lasso is that the same tuning parameter is used for both variable selection and shrinkage. As a result, it typically ends up selecting a model with too many variables to prevent over shrinkage of the regr...

متن کامل

Improved Variable Selection with Forward - Lasso Adaptive Shrinkage

Recently, considerable interest has focused on variable selection methods in regression situations where the number of predictors, p, is large relative to the number of observations, n. Two commonly applied variable selection approaches are the Lasso, which computes highly shrunk regression coefficients, and Forward Selection, which uses no shrinkage. We propose a new approach, “Forward-Lasso A...

متن کامل

Shrinkage estimation and variable selection in multiple regression models with random coefficient autoregressive errors

In this paper, we consider improved estimation strategies for the parameter vector in multiple regression models with first-order random coefficient autoregressive errors (RCAR(1)). We propose a shrinkage estimation strategy and implement variable selection methods such as lasso and adaptive lasso strategies. The simulation results reveal that the shrinkage estimators perform better than both l...

متن کامل

Shrinkage Inverse Regression Estimation for Model Free Variable Selection

The family of inverse regression estimators recently proposed by Cook and Ni (2005) have proven effective in dimension reduction by transforming the highdimensional predictor vector to its low-dimensional projections. In this article, we propose a general shrinkage estimation strategy for the entire inverse regression estimation family that is capable of simultaneous dimension reduction and var...

متن کامل

Variable Selection in Nonparametric and Semiparametric Regression Models

This chapter reviews the literature on variable selection in nonparametric and semiparametric regression models via shrinkage. We highlight recent developments on simultaneous variable selection and estimation through the methods of least absolute shrinkage and selection operator (Lasso), smoothly clipped absolute deviation (SCAD) or their variants, but restrict our attention to nonparametric a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011